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SUMMARY 
The use of the highest-order ((N - 1)th-order) Lagrangian interpolation polynomial for the approximation 
of the exact solution in the backward characteristics scheme with N nodes is inefficient owing to the 
excessive number of terms in the polynomial. New schemes based on a combination of lower-order 
polynomials to approximate the cxact solution are developed, with the relative weighting of the polynomials 
determined by Fourier mode analysis. With the addition of a flux limiter and a modified discriminator, 
the resulting schemes are oscillation-free, highly accurate, efficient and more cost-effective as compared 
with those schemes using the highest-order Lagrangian polynomial. 
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INTRODUCTION 

A tremendous number of explicit finite difference schemes have been developed for the solution 
of the unsteady advection equation during the past several decades. Typical schemes are 
summarized as follows. The first-order upwind scheme' is the simplest scheme but introduces 
large numerical diffusion to the solution. The second-order leapfrog2 and Lax-Wendroff3 
schemes eliminate numerical diffusion but introduce significant phase error to the solution. 
Fromm's second-order method of zero average phase error4 seems to be the best second-order 
scheme. The third-order QUICKESTs scheme eliminates both the diffusive and phase errors 
arising from the first- and second-derivative terms and is widely used. 

In parallel, the backward characteristics method with Lagrangian interpolative approximation 
of the exact solution has been used in the solution of the same equation.6-8 Under constant 
velocity the scheme using two-node linear interpolation is equivalent to the first-order upwind 
finite difference scheme, the scheme using three-node quadratic interpolation6 is equivalent to 
the Lax-Wendroff scheme and the scheme using four-node cubic interpolation is equivalent to 
the QUICKEST scheme.* Also, the scheme using quadratic interpolation over four nodes' is 
equivalent to Fromm's second-order method of zero average phase error. In situations where 
the solution profile is sharp but smooth, the use of the above low-order (up to  third-order) 
Lagrangian interpolation scheme may not be accurate enough and a higher-order scheme is 
required. 

Instead of using a Lagrangian polynomial, a Hermitian polynomial, which utilizes the 
unknown scalar and its spatial derivatives as dependent variables in the interpolation, has also 
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been employed. The scheme with two-node Hermitian cubic interpolation (2PHC)'' is found to 
be quite accurate but requires the solution of four equations (one for the scalar and the rest for 
the scalar's spatial derivatives) in two dimensions, which leads to a complicated algorithm for 
dispersion or hydrodynamics modelling. To retain the accuracy of 2PHC and avoid using scalar 
derivatives as dependent variables, the six-nodel I quasi-Hermite interpolation scheme was 
developed. 

Another natural extension of the backward characteristics method to higher order is to use an 
N-node scheme with an (N - 1)th-order Lagrangian interpolative polynomial (the highest-order 
Lagrangian polynomial). The ULTIMATE schemes' were developed along this line. However, 
the number of terms involved in such schemes can be excessive, e.g. a six-node fifth-order (6P5I) 
scheme has 31 terms in the finite difference expression while an eight-node seventh-order (8P7I) 
scheme has 57 terms in the finite difference expression. Also, the accuracy produced by this type 
of interpolation may not be the highest as compared with other schemes requiring the same 
number of nodes. 

This paper presents the development of a subclass of the backward characteristics scheme in 
which the interpolative approximation of the exact solution is based on a combination of several 
lower-order Lagrangian polynomials for a given number of nodes used in the computation. 
Fourier mode analysis is used to determine the optimal weighting of the various polynomials 
employed in the scheme. A flux limiter is employed to suppress numerical oscillation and a 
modified discriminator is developed to preserve the physical peak. Typical test examples are 
used to illustrate the accuracy and efficiency of the scheme. 

GOVERNING EQUATION AND FOURIER MODE ANALYSIS 

The one-dimensional pure advection of scalar C with constant positive velocity U is considered: 

f3C 2C 
- +u- -=o,  

SX d t  

where t is the time and x is the spatial co-ordinate. In Fourier mode anlaysis the initial condition 
of (1) is assumed to be a Fourier mode, Co exp [J( - l)ax], where Co is the amplitude, ~7 = 2n/L 
is the spatial frequency and L is the wavelength. The solution to the equation is given 
by 

C(x, t )  = C, exp [J( - l )o(x - Ut)]. (2) 

The propagation of the solution from time nAt to (n + 1)At is 

(3) C"+' = C:"exp [-J(-l)aUAt] = AC", 

where At is the time step and I is called the propagation factor. The corresponding propagation 
factor 1.' of a particular scheme can be obtained by substituting the Fourier mode expression 
into the finite difference expression of the scheme. The accuracy of the scheme can be assessed 
by comparing its propagation factor with that of the analytical solution. For an ideal numerical 
scheme both the amplitude ratio lj.'l/l~.l and the celerity ratio arg(A')/arg(I.) should be equal to 
unity. 
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DEVELOPMENT OF THE NUMERICAL SCHEMES 

Equation (1) states that the scalar C is invariant along a characteristic line. To determine the 
unknown scalar at node i and time level n + 1, C; ", the characteristics line 

dx 
-- = u 
dt (4) 

passing through node i at time level n + 1 is traced backwards in time to level n and the invariant 
scalar value is obtained at known time level n by means of polynomial interpolation: 

( 5 )  

where Ax is the space step. The interpolation polynomial chosen should pass through the nodal 
value Cl and preferably pass through the nodal value Cl- because the resulting finite difference 
expression will then give the exact solution when the Courant number v (=  UAt /Ax)  is zero or 
one. 

If more than two nodes are involved in the computation, a Lagrangian polynomial can always 
be constructed to pass through all the nodal values. If three points are involved, there are two 
such quadratic polynomials, one passing through nodal values Cl- I ,  Cl. and Clt and the other 
passing through C2-2, Cl-' and C;. The former is found to have a better accuracy and is 
equivalent to the Lax-Wendroff scheme. If four points are involved, the cubic polynomial that 
produces a stable and accurate solution is that passing through nodal values Cl- 2 ,  C;l- Cf 
and C;+ 1. The resulting scheme is found to be equivalent to the widely used QUICKEST scheme. 

For a higher-order scheme in which 2r nodes are involved, the general expression can be 
written as 

C:' ' = C(iAx, ( n  + 1)A.t) = C(iAx - UAt, ndt) = C*, 

r - 1  ' - l  ( v  - r ) * . . * * ( v  - k + l ) * ( v  - k - l ) * . - . * ( v  + r - 1 )  
cy+k = 2 f i + k ( v ) c y t k .  c;+' = c - --- - ~ - -- 

k =  - r  ( k  - r ) * . . - *  1 *(- l ) * . . . * ( k  + r - 1 )  k =  - r  

(6) 

Only schemes with an even number of nodes are considered, because numerical experiments 
indicate that schemes with an odd number of nodes have relatively large phase error. There are 
four desirable properties that the schemes possess. 

1 .  C:+' = Cl when v = 0. 
2. Cl" = C;-l when v = 1.  
3. Consistency requirement. If Cl = Co V i ,  then Cy' = C ,  for any value of v.  
4. Symmetry property. For transient advection in the positive direction with Courant number 

v, the value of C;+' is given by equation (6). For transient advection in the negative direction 
with Courant number p (= VAt/Ax),  the value of C,?+ ' is given by 

Comparing Figures l(a) and l(b), if p = 1 - v and the nodal numbering system is such that 
j + k = i - k - 1, then we have 

c!" =cl" f i + k ( v ) = f i - k - l ( l  - v )  v k .  (8) 

However, for higher-order schemes the criterion that the interpolative polynomial should pass 
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Figure I .  Illustration of the symmetry property of the backward characteristics method 

all the nodal values may not be necessary and the approximation produced by such a polynomial 
may not be the most accurate. Also, an excessive number of terms are involved in the polynomial, 
which reduces the computational efficiency. 

To save computational effort and to attempt to improve the accuracy, a class of schemes using 
lower-order interpolation polynomials is developed based on the following criteria. For a 2r-node 
scheme the scheme is formed by a combination of rth-order polynomials which all pass through 
nodal values C: and Cl- , (these polynomials process properties 1-3 above) Property 4 is satisfied 
by choosing the following pair of polynomials: one passes through nodal values Cl- ,, . . . , Cl- ,, 
Cl, . .., C;+,, and the other passes through Cl- , - l , .  . ., Cl- where I and J are 
natural numbers. The optimal weighting of each polynomial is determined by means of Fourier 
mode analysis. The criteria for the selection of the scheme are that the integrated absolute error 
of the amplitude ratio over the whole spectrum is minimum and both the amplitude ratio and 
phase accuracy of the selected scheme are at  least equal to those of the scheme using 
(2r - 1)th-order polynomials. It has been found subsequently that the optimal weighting of each 
polynomial is dependent approximately linearly on v and hence the weighting coefficient is 
expressed as a linear function of v .  Assume the expression of the scheme can be written as 

Cf, . . ., Cl+,- 

where the ak are the weighting parameters (linear function of v )  of the polynomials 4. The 
consistency requirements give 1 ak = 1 and the symmetry property gives q k ( v )  = a, + k -  1( 1 - v). 

For the four-node scheme (4P30) there are two second-order polynomials which pass through 
consecutive nodal values including Cl and Cl- I .  One is S1 which passes through Cl- ,, Cl and 
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C;+ , and the other is S2 which passes through C;-’, Cy- , and Cl. The expressions for SI and 
Sz are given in Appendix I. The resulting scheme which satisfies properties 1 4  is given by 

(10) 
where a is a free parameter determined as 3 from Fourier mode analysis. The full expression of 
4P30 is given by 

C ; + ’ = [ a + ( I  -2a)v]*Sl +[(I  - a ) + & -  l)v]*Sz, 

Cy’ ’ = ;[( - v 3  + 3v2 - 2v)C;t 1 + (3v3 - 6v2 - 3~ + 6)Cy 
+ (- 3v3 + 3v2 + 6v)C;- 1 + (v’ - v)C;-J.  (1 1) 

Accidentally, the scheme is exactly the QUICKEST scheme. 
For the six-node scheme there are three third-order polynomials L, ,  Lz and L,, passing 

through Cl and C;-l. Lk passes through C1-k, C ; - k + , ,  C;-k+z and c y - k + 3  for k = 1,2,3. The 
expressions for L,, L, and L, are given in Appendix I. To satisfy the four properties, the resulting 
scheme (6P40) is given by 

C;+’ = ( a  + b*v)*L,  + (1 - 2a - b)*L2 +(a  + b - b * v ) * L 3 ,  (12) 
where a and b are free parameters determined as a = 607/1800 and b = -390/1800. The full 
expression of the scheme is given by 

* [(390v4 - 607~’ - 3 9 0 ~ ~  + 607v)C;+, 
1 

10800 
, ;+I = - 

- (1 1 7 0 ~ ~  + 325~’ - 7 0 8 9 ~ ~  + 5594v)C;+ 1 

+ (780~“ + 5 5 7 0 ~ ~  - 1 3 6 5 6 ~ ~  - 3494~ + 10800)C; 
+ (780~” - 8690~’ + 7734~’ + 10976v)C:- , 
- (1 1 70v4 - 5 0 0 5 ~ ~  + 906~’ + 2929v)C;- 2 

+ ( 3 9 0 ~ ~  - 953~’ + 129~’ + 434v)C;-J. (13) 
For the eight-node scheme there are four fourth-order polynomials K , ,  K , ,  K, and K4 passing 

through Cy and CY-’. The expressions for these polynomials are given in Appendix I. The 
resulting scheme (8P50) is given by 

C;” = ( a + b * v ) * K , + [ c + ( l  -2a-b-2c)*v]*K2 
+ [(l - 2a - b - c) - (1 - 2a - b - 2c)*v]*K3 + [(a + b) - b*v]*K,, (14) 

where a, b and c are free parameters determined as a = 2465/18000, b = - 1734/18000 and 
c = 8755/18000. The full expression of the scheme is given by 

1 
432000 

c;+’ =- - * [( - 1734~’ - 1 0 0 3 ~ ~  + 6 6 6 4 ~ ~  + 1003~’ - 493Ov)Cr+ 

+ (4230~’ + 2 5 1 1 5 ~ ~  - 5 1 3 2 0 ~ ~  - 25115~’ + 4709ov)C~+z 
+ (3126~’ - 8 2 8 5 7 ~ ~  + 33952~’ + 310893~’ - 2651 14v)Cy+ , 
+ (-18390~’ + 9 0 6 6 5 ~ ~  + 186800~’ - 582845~’ - 108230~ + 432000)C1 
+ (18390~’ - 1 2 8 5 ~ ~  - 365560~’ + 337645~’ + 44281Ov)c1-1 
+ (-3126~’ - 6 7 2 2 7 ~ ~  + 266216~’ - 53133~’ - 14273O~)C1-2 
+ (-4230~’ + 46265~“ - 91440~’ + 1 3 9 1 5 ~ ~  + 3549Ov)C;-, 
+ (1734~’ - 9673~” + 14688~’ - 2363~’ - 4386v)C:-41. 
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Comparing with the corresponding schemes using the highest Lagrangian interpolation poly- 
nomials based on Fourier mode analysis, the newly developed schemes are apparently better in 
terms of phase and amplitude accuracies (Figures 2(a) and 2(b)). 
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CONSERVATIVE FORM, FLUX LIMITER AND DISCRIMINATOR 

The backward characteristics schemes can be rewritten in the conservative form 

AMPLITUDE RATIO 
1.05, 1 

I I I I 

0 5 10 15 20 25 
WAVE LENGTH 

0.6 1 I I I I 

5 10 15 20 25 0 

(4 WAVE LENGTH 
o u l & l 4 p x )  

Figure 2. Fourier mode analysis of various schemes: (a) four-point and six-point schema 
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3P3Z 
Figure 2. Fourier mode analysis of various schemes: (b) eight-point schemes 

For a 2r-node scheme 

k =  - r  

where g and h are polynomials in v and & + k ( v )  = h i + k -  l (v) .  As an example, for 6P40 it can be 
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shown that 

[(390v3 - 953~'  + 1 2 9 ~  + 434)Cy-2 - (780~'  - 4052~' + 7 7 7 ~  + 2495)Cy-1 
1 

10800 
c;+1/2 = _- 

- (4638~' - 6 9 5 7 ~  - 8481)C: + ( 7 8 0 ~ ~  + 932~'  - 6699~  + 4987)C;+ 1 

- ( 3 9 0 ~ ~  - 6 0 7 ~ ~  - 3 9 0 ~  + 607)CY+J. (19) 

For non-linear advection problems in which the velocity is variable in time and space, the 
conservative form can be written as 

where 

gi+k(v) h i + k - l ( v ) .  

In situations where sharp fronts exist, non-physical over- and undershoots of the numerical 
solution appear when the usual finite difference schemes (including backward characteristics 
schemes) are used. Many flux-limiting schemes have been proposed to eliminate this prob- 
lem. 2-1 

One advantage of the conservative form of a characteristics-based scheme is that a 5ux limiter 
can easily be added to the scheme to prevent the generation of over- and undershoots of the 
solution, with the conservative property of the scheme being retained. The flux limiter used in 
the present scheme is due to Leonard and Mokhtari.14 The underlying assumption used in 
developing the flux limiter is that the concentration variation is monotonic within the domain 
bounded by two adjacent nodes. Details of the flux limiter are summarized as follows ( v  is 
assumed constant and positive for easy presentation). (a) If Cl- < C; < c+, or vice versa, then 
first check whether the computed C;+ 112 lies within the bounded range [C;, Cy+ '3; if not, then 
set Cf+112 to its nearest value within the bounded range. Secondly, check whether C;" lies 
within the bounded range [Cf- 1, Cf]. This condition can be obtained by tracing the characteris- 
tics line passing through node i backwards in time from time level n + 1 to time level n. By 
using equation (16) and the inequality Cf- < C;- 112 < C;+ or vice versa, the above condition 
can be reduced to a more restrictive condition that C;+ 1/2 should lie within the bounded range 
[Cl, Cl- + (Cl - Cl- Jv]. If the computed Cl+ lies outside this range, then set Cf+ 112 to its 
nearest value within the bounded range. (b) If C: is a local minimum or maximum among the 
three values C;- 1, C? and Cf+ 1, then set Cl+ 112 equal to C;. 

The flux limiter is successful in preventing over- and undershoots of the solution, but it also 
causes clipping of profiles with sharp curvature. To avoid clipping, the flux limiter should be 
switched off around the peak of a sharp profile. This requires a mechanism to differentiate 
between physical peak and numerical oscillations. Leonard and Niknafs' ' have developed a 
seven-point discriminator to serve this purpose. However, this discriminator will swtich on the 
flux limiter when the Courant number is 0.5 for some schemes. The reason is that this 
discriminator does not treat the case where there are two adjacent nodes with the same maximum 
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Figure 3. Illustration of the case where the seven-point discriminator fails to work for certain schemes 

value as the local maximum (Figure 3). Thus the narrow extreme is clipped by the flux limiter. 
Moreover, this seven-point discriminator requires considerable computational effort as com- 
pared with the numerical scheme itself. To overcome these two shortcomings, a five-point 
discriminator is developed. The algorithm of the five-point discriminator is given as follows. 

Assuming there is a local maximum (a minimum requires the reversal of all the subsequent 
inequalities described below), the discriminator chooses a stencil of five nodes, Cf-2r Cl. l ,  Cl, 
C;+ and Cl+2, and computes the difference between each pair of consecutive points: 

1. Check whether D ,  and D ,  are positive, D 3  is non-positive and D ,  is negative. If true, then 
go to step 2; if not, then proceed with the limiter active. 

2. Check whether ID,I < ID,I and ID,( < ID,J. If true, switch off the limiter at the current 
node i and the two adjacent nodes i - 1 and i + 1; if not, then proceed with the limiter 
active. 

TEST EXAMPLES 

The first example is pure advection of a combination of an elliptic profile (half-length of z-axis, 
10 cm) and a Gaussian profile (standard deviation 1.5 cm) under constant velocity to compare 
the performance of the above schemes. The velocity is 0.5 cm s- ' .  The grid size is 1 cm, the time 
step is 1 or 0.2 s and the distance travelled is 50 cm. The relative performances of the schemes 
are in accordance with the Fourier mode analysis (Figures 4 and 5) .  The present schemes are 
more accurate than their corresponding schemes using the highest-order Lagrangian polynomial. 
2PHC is included in the comparison to represent the class of scheme using a Hermitian 
polynomial. The performance of this scheme is inferior to that of 6P40 (larger damping of 
short-wave components; see Figures 4(b) and 5(b). 
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Figure 4. Pure advection of various profiles at Courant number of 01: (a) QUICKEST/4P30; (b) 6P40; (c) 6P5I 
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Figure 4. Pure advection of various profiles at Courant number of 0.1: (d) ZPHC; (c) 7PSO; (0 8P71 
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Figure 5. Pure advection of various profiles at Courant number of 0.5: (a) QUICKEST/4P30; (b) 6P40; (c) 6PSI 



EFFICIENT BACKWARD CHARAnERISTICS SCHEMES 

1.1 

0.0 - 
0.0 
0.7 - 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

- 
PPHC 

scheme 
1 - (4 

- 

- 
- 
- 
- 
- 
- 

0 -  Y I 

0.4 
0.3 
0.2 
0.1 

1.1 

8P7l 
0.0 :(fl 
0.0 - scheme 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

- 
- 
- 
- 
- 
- 
- 

0 v 

Figure 5. Pure advtction of various profiles at Courant number of 05: (d) 2PHC; (c) 8PSO; (0 8P71 



1010 T. S. YU AND C. W. LI 

1 2  

1 

z 0.8 

B 
I- 

I- z 
d 0.0 

P O.' 
0 
0 09 

C 

-0.: 
I 40 60 m 100 120 140 

DISTANCE 

Figure 6. Effect of flux limiter and discriminator 

The second example is pure advection of the same profiles plus a square profile (plateau 
width 9 cm) to illustrate the effect of imposition of the flux limiter and the discriminator. 6P40  
is used in the simulation and 90 time steps are run for a Courant number of 0.5. The results 
are shown in Figure 6. For the square profile, over- and undershoots of the solution are apparent 
for the original scheme, while the imposition of the flux limiter can prevent this problem. For 
the Gaussian profile, in contrast, the imposition of the flux limiter causes clipping of the profile, 
while the switching-off of the flux limiter around the physica peak by the discriminator can 
eliminate this effect and produce an accurate solution. 

The computational times required by the various schemes for the first example are shown in 
Appendix 11. The computational effort required by 6P40  is double that required by 4P30 and 
about 8 5 %  of that required by 6P5I. The computational effort required by 8P50 is 320% of 
that required by 4P30  and about 80% of that required by 8P7I. 

CONCLUSIONS 

A subclass of the backward characteristics method in which the interpolative polynomial used 
is a combination of several lower-order Lagrangian polynomials for a given number of nodes 
involved in the computation is developed with the aid of Fourier mode analysis. This schemes 
are efficient, accurate and oscillation-free after the addition of a flux limiter and a modified 
discriminator. 

APPENDIX I: LAGRANGIAN POLYNOMIALS USED IN EQUATIONS 
(lo), (12) and (14) 

s, = +v(l + V)CY- 1 + (1 - v)(1 + v)CY - :v(l - V)CY+ 1, 

s 2  = -4v(l  - V)C?-2 + v(2 - V)CY- 1 + $( 1 - vx2 - V)CY, 

L ,  = &V(I + vx2 + v)c:- + i(i - v)(i + 4(2 + v)c: 
- fv(1 - vx2 + v)C?+ 1 + fv(1 - v)(l + V)CY+,, 
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L2 = - d ~ ( l  - v)(1 + v ) C ~ -  2 + tv(2 - v)(l + v ) C ~ -  1 

+ fi1 - v)(2 - v)(l + v ) C ~  - kv(1 - v)(2 - v ) C ~ +  1, 

L3 = &v(1 - ~) (2  - v)C~-, - $41 - vM3 - v ) C ; - ~  

+ 442 - ~ ) ( 3  - v ) C ~ -  1 + a1 - ~ ) ( 2  - ~ ) ( 3  - v ) C ~ ,  

K l  = & ~ ( l  + vX2 + ~ ) ( 3  + v ) C ~ - ~  + i ( l  - v)(1 + ~ ) ( 2  + ~ ) ( 3  + v ) C ~  

- i v (1  - vM2 + ~ ) ( 3  + v ) C ~ +  1 + $v(l - vM1 + vK3 + v)C;+, 

- 2941 - vK1 + vM2 + v)C7+3, 

K, = -&v(l - v)(1 + v)(2 + v)Cf-2 + kv(2 - VX1 + ~ ) ( 2  + v)C;- 1 

+ ~1 - vM2 - vH1 + vW2 + v ) C ~  - & ~ ( 1  - v)(2 - vM2 + v)C~+  1 

+ &v(1 - vX2 - v)(1 + v)C;+2, 

K3 =hv(l - vX2 - v)(l + V)CY-~ - iv(1 - v)(3 - v)(1 + v)C~-Z 

+ i ~ ( 2  - ~ ) ( 3  - vK1 + v)C;-1 + g 1  - vX2 - vX3 - V X l  + v ) C ~  

- &v(l - vM2 - v)(3 - v)C;+ 1, 

K4 = - & ~ ( l  - ~ ) ( 2  - v)(3 - V ) C Y - ~  + ;v(l - ~ ) ( 2  - ~ ) ( 4  - V ) C ? - ~  

- +v( 1 - vX3 - ~ ) ( 4  - v)C;- 2 + dv(2 - vK3 - vX4 - v ) C ~ -  1 

+ &1 - ~ ) ( 2  - vM3 - vM4 - v)C;. 

APPENDIX 11: COMPUTATIONAL EFFORT REQUIRED BY VARIOUS 
SCHEMES IN THE FIRST EXAMPLE WITH 200 NODES AND 

100 TIME STEPS 

Scheme CPU time (s) 

4P30, QUICKEST 
6P40 
6P5I 
8P50 
8P71 

0.22 
0.44 
0.52 
0.7 1 
0.88 

The computer model used for simulation is a 486 DX-33. 
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